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Abstract--Applying the time series analysis idea to the temporal and spatial fluid velocity correlations, 
a three-dimensional Lagrangian model for the motion of particles in turbulent flows has been established. 
This model has been used to simulate the experiments of other workers. The computed results are 
compared with the experimental data for the particle dispersion, velocity correlations and velocity decay. 
In the case where the mean turbulent flow has one main direction, this model has been extended to include 
the Eulerian temporal velocity correlation; a so-called mixed model has been devised. This model has been 
used to compute particle dispersion in stationary, homogeneous, isotropic and incompressible turbulence. 
Comparison is made with the theroetical long-time particle diffusion coefficients for cases where the 
crossing-trajectory effect is important or unimportant. Good agreement is obtained. 
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1. I N T R O D U C T I O N  

A number of computational methods have been developed to describe turbulent flows laden with 
particles. These methods use either Eulerian or Lagrangian analyses. In the Eulerian approach, 
both the fluid carrier and the particulate phase are assumed to be continuous media and sets of 
coupled differential equations are derived for each phase (e.g. Abbas et aL 1980; Durst et al. 1984; 
Elghobashi et al. 1984). In the Lagrangian approach, particles are treated individually by solving 
the dynamic equation of particle motion and the bulk properties of the particulate phase are 
obtained by averaging over a statistically significant number of particles. 

This paper models particle motion in turbulence by a Lagrangian method. Gosman & Ioannides 
(1981) proposed a model to account for the effect of fluid turbulence on particles when the mean 
fluid velocity is known and the fluctuating part is obtained by sampling from a Gaussian probability 
distribution function (p.d.f.) whose variance is proportional to the local turbulent kinetic energy. 
The dynamic equation of particle motion is integrated with the fluid instantaneous velocity 
unchanged until a particle-eddy interaction time expires. This particle-eddy interaction time is 
defined to be the minimum of the eddy lifetime and the transit time. In this model, the turbulent 
instantaneous velocity field is supposed to be uniform within the eddy. In other words, this model 
does not account for the continuity effect (Csanady 1963) which leads to a difference between the 
particle longitudinal and transverse long-time diffusion coefficients (Csanady 1963; Reeks 1977; Nir 
& Pismen 1979). Shuen et al. (1983, 1985) used the same idea. Kallio & Reeks (1989) modified this 
model by determining the eddy lifetime with an exponential p.d.f, distribution having the mean 
equal to the Lagrangian integral timescale. Burnage & Moon (1990) advanced further in this 
direction. Their model contains both a random timescale and a random lengthscale. The dynamic 
equation of particle motion was integrated with the fluid instantaneous velocity unchanged until 
either the integrating time or the distance between the particle and a fluid point is greater than the 
corresponding random scale. The two random scales are given by random selections from two 
Poisson processes whose means are the turbulent Lagrangian integral timescale and the eddy 
lengthscale. 

Ormancey & Martinon (1984) introduced another way of modeling particle motion in turbulent 
flows. They constructed a sampling process for the fluctuating velocity of a fluid point during a 
finite interval of time. For the fluctuating velocity of the fluid at the particle position however, they 
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used another random process which accounts for the fluid Eulerian longitudinal and transverse 
correlations. As a result, this model includes the continuity effect on particle dispersion. They 
followed, simultaneously, a particle and a fluid point until the distance between them exceeds 
a certain given lengthseale. Berlemont et al. (1990) pursued this approach but expressed the 
fluctuating fluid velocity along the fluid trajectory as the weighted sum of its past values plus a 
random variable, as suggested by Parthasarathy & Faeth (1990). These two models followed a fluid 
point during a finite time interval and used noise terms in the temporal and spatial correlation 
relations that are mean-zero, Gaussian variables. 

The starting point of the present study is the time series analysis idea (Box & Jenkins 1976). By 
applying it to both the fluid Lagrangian and the Eulerian spatial correlations, the fluctuating fluid 
velocities at two successive positions of the particle are specified. In the present model, the fluid 
location and velocity change at every time step. The correlation functions are specified only for 
one time step of computation, At, and for the distance developed between the particle and a fluid 
point during At. An appropriate linear combination of noise terms is used so that they are 
mean-zero, Gaussian variables. 

This paper is organized as follows. Section 2 is devoted to the establishment of model 1. The 
choice of the correlation functions and the associated parameters are discussed in subsection 3.1. 
The predicted results for particle dispersion, for the decay of fluctuating velocity and for the 
velocity correlation are compared with experimental data of Snyder & Lumley (1971) and of Wells 
& Stock (1983) in subsections 3.2 and 3.3. In subsection 3.2, a comparison is also made with the 
theoretical results of Nir & Pismen (1979) for velocity correlations of the copper particle of the 
experiment of Snyder & Lumley. The sensitivity of model 1 to the time step and a numerical 
parameter is examined in subsection 3.4. In subsection 3.5, an extension of model 1 is introduced 
that incorporates the Eulerian temporal velocity correlation. This establishes model 2 (the mixed 
model). This model is applied to particle dispersion in a stationary, homogeneous, isotropic and 
incompressible turbulent flow. The predicted long-time particle diffusion coefficients are compared 
with the theoretical results of Csanady (1963), Nir & Pismen (1979) and Pismen & Nir (1978), both 
in the presence and the absence of the crossing-trajectory effect. 

2. ESTABLISHMENT OF THE METHOD 

2. I. Particle motion 

The present study neglects the Basset term and the temporal derivatives of the fluctuating fluid 
velocity along the trajectories of solid and fluid particles. Such a simplification has been justified 
for low turbulence intensities and moderate departure from homogeneity (Ormancey 1984). The 
corresponding derivatives of the fluid mean velocity, however, are preserved. By neglecting the 
influence of streamline curvature and the interaction between particles, the motion of a spherical 
and rigid particle is presented by the following equations: 

dV 3 O(V - U) 
PP "~- = 4dp PrCD(V -- U)IV - UI - 0.5pf dt + (pp - Pr)g [1] 

and 

dX 
- -  = V [ 2 ]  
dt 

where pp and pf are the particle and fluid densities, respectively, V and U are the instantaneous 
velocities of particles and fluid, respectively, dp is the particle diameter and g is the gravitational 
acceleration. The coefficient CD is introduced for the drag term and is given by 

24 
C D ~--" (-~C)p[1 +0.15(Re) °'687] for (Re)p < 200, 

where (Re)p, the particle Reynolds number, is defined as 

IU -- Vldp 
( R e ) p  = 

V 
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In this study, the lift forces, due to either particle rotation (Rubinow & Keller 1961) or to fluid 
velocity gradient (Saffman 1965), are not included, but the virtual mass term is. 

The effect of fluid turbulence on the particles is considered but the modification of the turbulent 
field due to the presence of particles is ignored, Therefore, all the mean data of the fluid field, 
including the mean velocity, the mean turbulent kinetic energy and the mean turbulent kinetic 
energy dissipation rate, are regarded as known a priori. They could be obtained by measurements 
or by a turbulent model. To know the statistic properties of particles, each particle is followed along 
its trajectory by integrating [1] and [2]. To do this, it is necessary to know the instantaneous velocity 
of the fluid at the location points of the particle. Since the fluid mean velocity is supposed to be 
known, it is only necessary to estimate the fluctuating fluid velocity at the location point of the 
particle. 

2.2. Model 1 

At the instant t, the particle and a fluid particle start out from the same position X~. After one 
time step of computation, At, they arrive at Xp and Xr, respectively, and the distance between Xp 
and Xf is As, as shown in figure 1. A relative coordinate system O-OSf~ is defined. The relative 
coordinate system O-O~f~ is chosen such that its origin is located at Xr and the e axis passes 
through the two positions Xf and Xp. Here Xs, Xf and Xp are the position vectors in the absolute 
coordinate system o-xyz.  

Since, in practical applications, flow fields are often non-homogeneous and non-stationary, 
the fluctuating velocity u~ is normalized by the square root of its local variance to lessen the 
effects of reference time and position. The normalized fluctuating component in the/-direction 
by W~, i.e. 

Ui 
W, = ~u~u: (i = 1,2, 3), 

where the subscripts 1, 2 and 3 represent, respectively, the directions of the relative O, ~ and [~ 
axes. The quantities with overbars indicate the ensemble average values. 

In the relative coordinate system O-O,~,D, the normalized fluctuating velocities at positions X,, 
X/, Xp are assumed to have the following correlation relations: 

and 

W i ( X f ) W j ( X s )  = W~(Xs)Wy(Xs)fb(At) (i,j  = 1, 2, 3) [3] 

W i ( X p ) W j ( X f )  .~. Wi(Xf)Wj(Xf)gij(A8) (i,j  ---- 1, 2, 3). [4] 

Relations [3] and [4] are called, respectively, the Lagrangian auto-correlation and Eulerian spatial 
velocity correlation functions. It should be pointed that the two relations are postulated for one 
time step of calculation, At. Throughout this paper, no summation convention is used. 

O 

O 

Figure I. The locations of  the particle and a fluid particle at the instants t and t + At. 
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Only the isotropic case is considered. The Reynolds stress components u~uj are, thus, zero for 
i ~ j  and the correlation relations [3] and [4] become: 

Wj(Xf)W~(Xs) = WI(Xs)Wi(X,)fL(At) (i = 1, 2, 3) [5] 

and 

W i ( X p ) W i ( X f )  = Wi(Xf)Wi(Xf)gii(A$) (i = 1, 2, 3). [6] 

The idea of  a time series analysis (Box & Jenkins 1976) is used for the stochastic process of  the 
fluid point from X s to Xf. Thus, 

W~(Xf) = a, W,.(Xs) + ~, (i = 1, 2, 3), [7] 

where aj (i = 1, 2, 3) are coefficients yet to be determined and ~t~ (i = 1, 2, 3) are mean-zero, random 
variables independent of W,.(Xs) but not necessarily Gaussian, whose properties will be discussed 
later. To determine the coefficients a~, the two sides of[7] are multiplied by W~(X~) and the ensemble 
average is taken. After accounting for the independence of  ~t; and W~(X,), the following relation 
is obtained: 

W~(Xf)W~(X~) = a~ W,(X~)W~(X~) (i = 1, 2, 3). [8] 

Substitution of [5] into [8] gives 

at =f~(At). [9] 

Squaring both sides of  [7] and taking the ensemble average, the variance of  a~ is determined to be 

( ¢ , ) ~ = x / 1 - a ~  ( i = 1 , 2 , 3 ) .  

It is evident from the definition of  a~ that when Xf approaches X~, a~ --* 1 and thus (a,)~ --* 0. In fact, 
if ~t~ is represented by a Gaussian white noise, for homogeneous turbulent flows, [7] will reduce 
to the equation used by Parthasarathy & Faeth (1990). Furthermore if a~ is represented by an 
exponential function, [7] will be identical to the equation of  Kaplan & Dinah (1988) and if At is 
very small compared to the Lagrangian integral timescale, [7] will be equivalent to the Langevin 
equation (Wax 1954; Durbin 1980; Sawford & Hunt 1986). For the close similarity of  [7] with the 
Langevin equation, the size of  the computation time step At may be subjected to certain limitations 
(see Durbin 1980). 

If  the concept of  a time series analysis is extended to represent the effect of  spatial displacement 
on the fluctuating velocities of  the fluid at the points Xf and Xp, 

W~(Xp) = b, W,(Xf) + fl, (i = 1, 2, 3), [10] 

where b~(i = 1, 2, 3) and fl; (i = 1, 2, 3) has the same sense as a~ and a~ in [7]. By the procedure 
already adopted for [7], it is from [10] that 

b i = g i i ( A s ) .  [ l  l]  

Introducing [7] into [10] to eliminate W~(Xf), 

W,(Xp) = a,b,W~(X~) + b,~t,+ fl, (i = l, 2, 3). [12] 

Denoting the terms underlined in [12] by ~,~, [12] can be rewritten as 

W~(Xp)=a,b,W~(X~)+~, (i = 1,2,3). [13] 

Here ~b~ (i = l, 2, 3) are assumed to be mean-zero, Gaussian random variables. To complete [13], 
the standard deviations (tr~)~ of  ~b~ are needed. By squaring both sides of [13] and taking the 
ensemble average, assuming the independence of  W,.(X,) and ~O~, the following is obtained: 

(a~,),- = ~/1 2 2 -a ,b ,  (i=1,2,3). [14] 

Equation [13] together with [14] is called model 1. The method established above is based on the 
fluid Lagrangian temporal velocity correlation of  the stochastic process representing the motion 
of  the fluid particle from X, to Xr. It will be called the Lagrangian temporal construction. 
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In the present study, [13] is used as the model equation. It represents the fluctuating velocities 
of the fluid at successive locations of the particle and includes both the time and space effects of 
the turbulent field via the coefficients ai and b~. This model, in contrast to the conventional time 
series method, has no restriction that u~ and fli are mean-zero, Gaussian variables. However, the 
requirement that the appropriate linear combination has these property, does place the restriction 
on the properties of ~; and fl~. 

It is noted that the coordinate system employed in figure 1 is only established for one time step 
and it should be changed continuously in the course of computation. 

2.3. The calculation procedures 

(1) At t = 0, the particle position and velocity are given. The initial fluctuating fluid velocity 
components ui (i = 1, 2, 3) at the particle positi__on are obtained from the Gaussian variables 
satisfying the p.d.f, with the local variances u 2. The instantaneous fluid velocity can then 
be obtained by adding the known mean velocity and the fluctuating part. 

(2) From the instantaneous fluid velocity found above, the fluid point position at time At, Xf 
can be calculated by the Euler-Cauchy method (referring to figure 1). Using the given 
particle initial velocity and the instantaneous fluid velocity just obtained, through [1] and 
[2], the position of the particle at the instant At, Xv, is obtained by the Runge-Kutta method. 
Displacement As can then be calculated (see figure 1). 

(3) Establish the relative coordinate system O-O.=f~. From [9] and [11], the coefficients at and 
b~ in [13] are estimated. The random terms ~ having the standard deviations given by [14] 
are generated by computer with the aid of the software GASDEV (Vetterling et al. 1988). 
The fluctuating velocity of the fluid point at Xp (the new particle position computed at step 2) 
can be found from [13]. 

(4) Let Xp be the starting point, i.e. X ,  for the next time step and repeat steps 2 and 3 until 
completion of the computation. 

3. VERIFICATION OF MODEL 1 

3.1. Choice of the correlation functions and the associated parameters 

In what follows, the following forms of the temporal and spatial correlation functions proposed 
by Frenkiel (1948) are adopted: 

W~(Xf)W,(X,) -- W,(Xs)W~(X,) exp (i = 1, 2, 3) [15] 

and 

Wi(Xp)Wt(Xr) = W~(Xf)W~(Xf) exp cos (i = 1, 2, 3). [161 

where AI is the longitudinal lengthscale and A 2 and A 3 a r e  the transverse lengthscales. Of course, 
other forms of the correlation functions can be used to replace [16], e.g. exponential functions. In 
the present study, all the sample computations are conducted for isotropic and incompressible 
turbulence. Therefore, the Lagrangian integral timescales eL and Eulerian lengthscales Ai in [15] 
and [16] can be estimated by 

and 

U 2 
T L= ~2 L = z3 L= Ce , - - ,  [17] 

L 2 AI = Cc2"r ! ~ [18] 

A 3 -- A2 -- Ce3AI, [19] 

IJMF 19/2--H 
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where u 2 = ~(u~ + u z , + u]) are 8 is the turbulent kinetic energy dissipation rate. Relations [17] and 
[18] can be found in Hinze (1975). According to Hinze (1975, p. 398), Cel and Ce2 are not 
independent but satisfy the following relation: 

0.588 
Ce  2 = - -  [20] 

Ce~ 

Again, based on the discussion of  the theory ofisotropic, incompressible turbulence by Hinze (1975, 
p. 426), Ce, = 0.235 and Ce3 = 0.5. For convenience, the values of  the associated parameters used 
throughout the present study are listed in table 1. 

In eases of isotropic or weakly anisotropic turbulence, the following relations hold between the 
fluctuating fluid velocity variances in the absolute coordinate system o-xyz and in the relative 
coordinate system O-O,Ffl: 

Ul2m 2 2 2 2 2 2 l ~ u x + m l u y + n , u ~  

U2..~_ 2 2 2 2 2 2 12Ux + m2u~ + n2uz 

U2 ~ 2 2 2 2 2 2. 13U x q- m3uy-k n3u z, 

[21] 

[22] 
[23] 

where 1,, mm, nl; 12, m2, n2 and/3, m3, n3 are the direction cosines of the O, ~ and fl  axes relative 
to the x, y and z axes, respectively. 

3.2. Simulation of the experiment of  Snyder & Lumley (1971) 

One of the most comprehensive experiments on particle motion in turbulent flows is that made by 
Snyder & Lumley (1973). With the use of a grid system, they produced a nearly isotropic decaying 
turbulent air flow (air density = 1.205 x 10 -3 g/cm 3 and kinematic viscosity = 14.937 x 10 -2 cm2/s). 
The particles ranged from light particles which follow the turbulent flow to heavy particles which 
experience both inertia and crossing-trajectory effects. Their diameters, densities and kinematic 
viscosity are given in table 2. The particles were injected into the turbulent flow at x /M = 20. The 
measurement was carried at or beyond x /M = 68, where x represents the distance from the grid 
and the grid spacing M = 2.54 cm. 

The principal direction of the flow was vertically upward. The experimental mean turbulence 
data are given by 

Ux = 655 (cm/s), U, = 0, U~ = 0, [24] 

-5 - (Ux)2 [25] 

42.4 - 16 

-5 (ux) ~ [261 uY= ( x ) 
39.4 ~ --  12 

and 
2 ~  2 u~ - u,.. [27] 

From Taylor's frozen hypothesis and the relation dk/dt = -8 ,  where k, the turbulent kinetic 
energy, is defined as 

k -- ½(u~ + u~ + u2), [28] 

Table 2. Parameters of the particles used in the experiment 
of Snyder & Lumley 0971) 

Table I. Values of the associated coefficients and the time Hollow Corn 
step At glass pollen Glass Copper 

Ce I Ce, Ce3 At (s) Diameter ~ m )  46.5 87.0 87.0 46.5 
0.235 2.5 0.5 0.001 Density (g/cm 3) 0.26 1.00 2.50 8.90 
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Figure 2a. Predicted and experimental particle transverse dispersions. 

the turbulent kinetic energy dissipation rate is obtained as 

e = ~  42.4:X 16)2' x 2" [29] 
- 3 9 . 4 \ ~  - 12 

In all the following comparisons, the lines represent the computed results, while the symbols 
are experimental data. Figure 2a compares the predicted and experimental transverse particle 
dispersions. To examine the overall effect of gravity on particle dispersion, figure 2b shows the 
displacement of particles in the gravity direction (the x-direction in the study). The comparison 
in figure 2a is in a fair agreement, although appreciable differences are observed. A larger difference 
is noticed for heavy particles. The comparison suggests that the present model works for the hollow 
glass particle, for which some Lagrangian approaches fail (Ormancey & Martinon 1984; Berlemont 
et al. 1990). As predicted by previous studies (e.g. Reeks 1977), figure 2b implies that particles 
disperse quickly in the direction of gravity due to the continuity effect. 

Figure 3a compares the numerical and experimental results on the decay of the transverse 
velocity fluctuation of the particles. Here the particle fluctuating velocity u is normalized by the 
square of the longitudinal mean velocity U [here 655 (cm/s)]. Qualitative agreement is noted but 
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Figure 2b. Predicted particle longitudinal dispersions. 
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Figure 3a. Predicted and experimental transverse fluctuating particle velocity decays. 

obvious differences appear, particularly for the hollow glass particles. This could be due to the low 
sampling rate used in the experiment. Figure 3(b) gives the predicted longitudinal fluctuating 
particle velocity decay. It shows that the fluctuating particle velocity decays more slowly in the 
gravity direction than in the normal direction. This is in agreement with the theoretical conclusion 
of other investigators (e.g. Reeks 1977). 

For the reasons given by Nir & Pismen (1979), no attempt was made in this paper to compare 
the predicted results with Snyder & Lumley's (1971) particle velocity correlations. Figure 4, instead, 
compares the computed Lagranglan correlations of the copper particle transverse velocity along 
with the theoretical results of  Nir & Pismen (1979). Reasonably good agreement is observed in 
figure 4, where x /M represents the location where the calculation was made of the correlation 
coefficient defined as below: 

RL(At) = ui(At)u,(O) (i = x,y). [30] 
u/Z(0) 

The  Lagran~an correlat ion timescales are defined as 

I~R,,(~o)dtp ( i=x ,y) .  [31] "~ii -~" L 

do 
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Figure 3b. Predicted longitudinal fluctuating partic.le velocity decays. 
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Figure 4. Comparison of the numerical and theoretical (Nir & Pismen 1979) Lagrangian correlations of 
the copper particle transverse velocity. 

As we know, increasing particle inertia will reduce the particle fluctuating velocity. On the other 
hand, this will also lead to an increase in the particle correlation. For examining the latter, we 
calculate the longitudinal and transverse Lagrangian correlation coefficients of the particle 
fluctuating velocity. Since the particle dispersions in the experiment are symmetric relative to the 
x axis, only the velocity correlations for the x- and y-components are computed. The computation 
is performed at three sections, x/M = 41, 73 and 171. The integral timescales of these correlation 
are denoted by T~ (i = x, y) and their computed values are tabulated in tables 3-6. It can be seen 
from these tables that the particle velocity correlates more in the direction of gravity than in the 
direction normal to it. As a result, the integral timescale is larger in the gravity direction than its 
counterpart in the normal direction. In tables 3-6, the timescale ~L is computed by [17]. 

3.3. Simulation of the experiment of Wells d Stock (1983) 

Wells & Stock (1983) used an identical grid system to Snyder & Lumley's (1971) to produce a 
turbulent air flow, but the main direction of the flow was horizontal. The mean data for the 
turbulent field are 

Ux = 655 (cm/s), Uy = O, U~ = O, [321 

1 

--7 _ (U~) 2 [33] 

u x - 5 3 . 2 2 4 ( M -  7.053) ' 

Table 3. Hollow glass particle Table 4. Corn Pollen particle 
X X 

T~., (ms) ~ ,  (ms) ~,~ (ms) M T~., (ms) ~.,. (ms) ~,~ (ms) 
41 14.93 15.83 16.68 41 29.90 29.88 16.68 
73 36.82 38.82 36.21 73 42.60 39.55 36.21 

171 95.39 96.70 95.79 171 80.62 64.62 95.79 

Table 5. Glass panicle Table 6. Copper 
X X 

M ~., (ms) ~P>, (ms) ~L (ms) M ~., (ms) %P,,. (ms) ~ (ms) 

41 41.07 50.96 16.68 41 53.86 56.23 16.68 
73 60.69 61.55 36.21 73 63.13 62.95 36.21 

171 85.11 72.30 , 95.79 171 90.13 77.25 95.79 
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2 Uy = 

(ux)  2 

( 56546_;,_8.867) 
and 

u 2 2 
. = U y .  

The turbulent kinetic energy dissipation rate is 

( l / 

[ 3 4 ]  

[35] 

2 )] t36j t (x'- 2" 
56.546 ~ -- 8.867 

Here e is obtained in the same way as the experiment of Snyder & Lumley (1971). 
In this experiment, 5 and 57 ~tm glass particles were charged before the grid and an adjustable, 

uniform electrical field within the test section was used so as to change the resultant force acting 
on the particles and, therefore, the particle terminal velocity Vt. The densities of  the 5 and 57 ~tm 
particles are 2.475 (g/cm 3) and 2.420 (g/cm3), respectively. In this simulation, gravity is in the 
negative direction of the y axis and the main flow direction coincides with the x axis. 

Figures 5 and 6 give the predicted and measured transverse dispersions for 5 and 57/~m particles, 
respectively. Reasonable agreement is observed when the particle terminal velocity lit is relatively 
small. As V~ becomes larger, the computed and experimental data disagree considerably. In the 
experiment, the tendency for the 57/~m particles to disperse faster than the 5/~m particles when 
Vt = 0 was reported. This cannot be noted in the prediction data. 

Figure 7a and 7b compare the predicted and experimental data of 5/~m particle fluctuating 
velocity decay in the longitudinal and transverse directions, i.e. in the x- and y-directions, 
respectively. Figures 8a and 8b show the results for the 57/~m particles. It is seen that the predicted 
results agree fairly well with the experimental data when Vt is not too large. As Vt gets larger, there 
is an apparent discrepancy and the agreement is worse. It can be noted that due to the continuity 
effect, the fluctuating particle velocities decay at different rates in the directions parallel and normal 
to gravity. 
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Figure 5. Predicted and experimental transverse dispersions of 5/~m particles. 
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Figure 6. Predicted and experimental transverse dispersions of the 57/~m particles. 

Figure 9a and 9b show the predicted Lagrangian particle velocity correlations in the longitudinal 
direction. According to the experimental information on the ratio of the Eulerian and Lagrangian 
timescales, we can deduce from the experimental data the Lagrangian particle velocity correlation 
in the longitudinal direction for the case of Vt = 0. The derived results are also plotted in figures 
9a and 9b. 
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Tables 7 and 8 summarize the predicted values of  z~ for the 5 and 57 # m  particles, respectively. 
Here the subscript x x  still denotes the longitudinal direction (the horizontal direction). For the case 
of  V, = 0 it can be deduced from the experiment that ~$x = 19.6 and ¢Px = 37.6 (ms) for the 5 and 
57/~m particles, respectively. The values predicted for this case are 25.03 and 38.35 (ms) for the 
5 and 57 # m  particles, respectively. 
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Figure 8a. Predicted and experimental longitudinal velocity decays of the 57/~m particles. 
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Figure 8b. Predicted transverse velocity decays of the 57/~m particles. 

3.4. Sensitivity of  model I to the time step At 

Studies  were also carr ied  ou t  to  de te rmine  the sensit ivity o f  the c o m p u t e d  results to  the choice 
o f  At. F o r  this purpose ,  the exper imenta l  system o f  Snyder  & Lumley  (1971) was used to calculate  
the longi tud ina l  and  t ransverse  par t ic le  diffusion coefficients, D1~ and D22. The  c o m p u t e d  results 
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Figure 9a. Predicted Lagrangian longitudinal velocity correlations for the 5/~m particles as well as the 
experimental correlation in the case of Vt = 0.0. 
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Figure 9b. Predicted Lagrangian longitudinal velocity correlations for the 57/zm particles as well as the 
experimental correlation in the case of  lit = 0.0. 

are presented in table 9. The table also shows that the results are slightly dependent on the 
time step At. Our experience with the computation shows that in order to ensure good predictions, 
the following condition may be regarded as a conservative criteria for the time step At in 
model 1: 

• / L ~'AI ~A2/. 
At = m m [ f , ,  . [37] 

3.5. Extension of  model I to include the fluid Eulerian temporal correlations 

As shown by the above predicted results, model 1 takes into account the crossing-trajectory effect 
and the continuity effect on the heavy particle dispersion, velocity decay and velocity correlation 
in the directions parallel and normal to the direction of gravity. However, in the absence of the 
crossing-trajectory effect, this model cannot give the prediction that the long-time particle diffusion 
coefficient is greater than fluid's. Reeks (1977) showed that this can occur only when the fluid 
Eulerian integral timescale is larger than the Lagrangian one. In stationary, homogeneous, isotropic 
and incompressible turbulence, Pismen & Nir (1978) directly related the long-time particle diffusion 
coefficient to the integral timescale of the fluid Eulerian temporal velocity correlation. This suggests 
that in order to predict that, in the absence of the crossing-trajectory effect, particles disperse more 
than the fluid, the inclusion of the fluid Eulerian temporal velocity correlation is necessary. In the 
following, model 1 is extended to include this correlation. 

Table 8. 57/~m Particle data 
Table 7. 5/zm Particle data V, (cm/s) z~.~ (ms) zP (ms) 

y r 

V, (cm/s) T~ (ms) z~ (ms) 0.00 38.35 38.67 
0.00 25.03 22.60 13.5 37.07 37.04 
2.73 20.48 23.29 25.8 35.84 36.78 
5.86 21.04 23.86 39.7 32.56 34.65 

13.31 19.26 19.12 54.5 29.47 33.40 
17.06 15.70 18.67 81.2 28.06 28.98 
20.91 14.88 18.12 108.0 24.34 26.40 
23.65 15.01 19.36 121.6 24.02 25.44 
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Table 9. Dependence of Du and D,, on the time step At 

Hollow Corn 
glass pollen Glass Copper 

Du [At = 0.01 (s)] 5.42 3.65 2.88 2.67 
D22 [At =0.01 (s)] 6.18 3.02 1.88 1.77 
D u [At =0.001 (s)l 5.58 4.09 3.03 2.79 
D22 [At = 0.001 (s)] 5.01 2.94 2.16 1.75 
D u [At = 0.0001 (s)] 5.66 3.58 2.93 2.91 
D22 [At -- 0.0001 (s)] 5.67 3.26 2.08 2.06 

If turbulent flow has one principal mean flow direction, as is often the case in the experiments 
of Snyder & Lumley (1971) and Wells & Stock (1983) and the theoretical investigations of Reeks 
(1977), Pismen & Nir (1978) and Nir & Pismen (1979), there is another method of modeling the 
fluctuating fluid velocities at the positions X, and Xp, defined in figure 1. Let the mean flow direction 
be the x-direction and the mean velocity be Urn. The relative coordinate system O'-O'~ ' f l ' ,  as 
shown in figure 10, is established. The orion of the coordinate system is at Xo, and the 0 '  axis 
passes through the two positions Xo, and Xp. In figure 10, Xo, is defined as X, + U, Ati, where i 
is the unit vector of the absolute x axis. As in the discussion in subsection 2.2, the normalized 
fluctuating velocities of the fluid at positions Xs, Xo, and Xp have the following correlation relations: 

W~(Xo.)Wj(Xs) -- Wi(X~)Wj(X,) F~(At) (i , j  = 1, 2, 3) [38] 

and 

Wi(Xp)W:(Xo.) = W~(Xo, Wj(Xo,) G~j(As,) (i , j  = 1, 2, 3). [39] 

It is clear that [38] is the Eulerian temporal velocity correlation function in a frame of reference 
moving with the velocity Urn, because, seen from the coordinate system O' -@'£ ' f f ,  X, and Xo, 
occupy the same space point, as seen in theoretical works of Reeks (1977), Pismen & Nir (1978) 
and Nir & Pismen (1979). For this reason, this method is called the Eulerian temporal construction. 
The function Gij is the same as gu in [4]. 

For reasons of simplicity, the normalized fluctuating fluid velocity in the coordinate system 
O'-O'[~]'fl '  is still denoted by Wi. Similarly, for isotropic turbulent flow cases, the following 
correlation relations hold: 

W,(Xo.)Wi(X,) = Wi(X,)Wi(X,) F~(At) (i = I, 2, 3) [40] 

and 

W,(Xp)Wi(Xo,) = Wi(Xo.)W,.(Xo.) Gil(As,) (i ffi 1, 2, 3). [411 

For the fluctuating fluid velocities at the positions Xs, X o, and Xp, it is postulated, respectively, that 

Wi(Xo . )=c iWi (X , )+  X, (i = 1,2,3) [42] 

and 

,(Xp) = dl W,(Xo.) + 6i (i = 1, 2, 3), [43] 

l .I~t 

Figure 10. The coordinate system established for model 2. 
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where c~, ;t;, d~ and 6~ (i = 1, 2, 3) have the same sense as a~, ~t~, b~ and fl~ in [7] and [10]. By similar 
procedures, 

c i = F E (A t), [44] 

= G. (as , )  [451 

and 

W~(Xp) = Gd~ W~(Xs) + ~, (i = 1, 2, 3), [461 

where ~i = ci~ + 6~ (i = 1, 2, 3) have the same meaning as ¢~. Their standard deviations (ac)~ are 
2 - c,  d,  ( i  = 1, 2, 3). [47] 

Since [13] leads to the correct limiting result for fluid dispersion, the following relations are 
proposed in model 2: 

~a~b, W,.(X,) + qJ, (i = 1, 2, 3) if asl ~ R a s  [48] 
W~(Xv) = )c~di W,.(Xs) + (, (i = 1, 2, 3) if as, < RAs" 

Equation [48] is also called the mixed model in later discussions. Here R is an adjustable parameter. 
When R = 0, model 2 reduces to model 1. If R = 0% the present model will be similar to that used 
by Reeks (1977) and Pismen & Nir (1978). As long as R # 0% the resulting scheme will lead to 
the theoretical result of  Taylor (1921) for the fluid dispersion coefficient. In the simulation of  this 
subsection, simply R = 1. It should also be noted that the two alternative equations in [48] are not 
established in the same coordinate system. 

Before validating model 2, some insight into its physical basis should be given. Two limiting 
situations can be considered. One is in the absence of  the crossing-trajectory effect; the other is the 
case where the particle free-fall velocity is much larger than the turbulence intensity. 

In the first case, when particle inertia is negligible, such as for a fluid point, particles can respond 
to all the turbulent fluctuations; thus As --. 0 and As, t> R a s  always holds. As a result, the first 
alternative in [48] controls the particle motion. In other words, particle motion is governed by its 
auto-correlation. This agrees with physical intuition. However, if particle inertia is so large that 
it remains immobile relative to the coordinate system moving with the velocity Um, then the velocity 
correlation of  the fluid at the particle position is the Eulerian temporal velocity correlation in the 
same frame of reference, as has been already pointed out by Pismen & Nir (1978). In this case, 
Ast --* 0 in model 2. In fact, when ast ~ 0, only the second alternative in [48] is used and c~d~ --. c~. 

Another limiting case is when the particle free-fall velocity Vt is much larger than the turbulence 
intensity. Let Vt be directed in the negative direction of  the absolute z-axis. Then the vector Xp - Xf 
(see figure 1) and Xp - Xo, can be expressed as x'i  + y'j + (z" - VtAt)k and x"i  + y"j  + (z" - V, At)k, 
respectively, where i, j and k are the unit vectors of the x, y and z axes. When Vt is large enough 
so that x', y '  and z '  (or x",  y"  and z") can be neglected, either x ' i  + y ' j  + ( z ' -  VtAt)k or 
x " i + y " j + ( z " - V t A t ) k  can be approximated by - V t A t k  in both alternatives in [48]. Conse- 
quently, the temporal (either Lagrangian or Eulerian) effect of the turbulence can be neglected in 
comparison to the spatial effect and a~b~ and c~d~ and c~d~ of [48] are equal to b~ and d;. Since g, 
and G~ are the same and they are approximately equal to g~(VtAt) ,  the velocity correlation of  the 
fluid at the particle position now reduces to the Eulerian spatial correlation in the coordinate system 
moving with Um in both alternatives in [48], regardless of  the particle inertia. That is, when Vt is 
significant enough, models 1 and 2 are the same. 

To verify model 2, a simulation for particle dispersion in a stationary, homogeneous, isotropic 
and incompressible turbulent flow is performed. This permits a comparison with the existing 
theoretical works of  Csanady (1963), Pismen & Nir (1978) and Nir & Pismen (1979). In stationary, 
homogeneous, isotropic and incompressible turbulence, the turbulent variance, the Eulerian 
integral timescale and th___e Lagrangian integral timescale are independent of  the reference direction. 
They are denoted by u 2, z E and t L. The corresponding correlations take the following forms: 

W~(Xo,) W~(XJ = W , ( X D W ~ ( X , ) e x p ( - A t / t ~ )  (i = 1, 2, 3), [49] 

and 

W~(X~)Wf(Xo.) = W~(Xo,)W~(Xo,)exp(--Ast/2A,)cos(as,/2A,) (i = 1, 2, 3). [50] 
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A value is assigned to the ratio of the fluid Eulerian integral timescale to the Lagrangian, as done 
in the theoretical study of Pismen & Nir (1978). Pismen & Nir (1978) obtained an explicit expression 
for the long-time particle diffusion coefficient. Their result for a particle with a large time constant 
in the absence of the crossing-trajectory effect is 

Dp = zEu 2. [51] 

AS given by Taylor (1921), the long-time fluid diffusion coefficient Dr is 

Dr = zLu2. [52] 

According to Pismen & Nir's study, Dp/Dr = 1.37. Thus, from [51] and [52], Ce~ = TE/z L = 1.37. 
So for the case of the stationary, homogeneous, isotropic and incompressible turbulent flow, 
calculations were conducted under the following mean turbulent flow conditions: 

Ux=655 (cm/s), U r = 0 ,  U,=0,  

and 

u z 2 2= 2 196 (cm~/s2), U x ~ U y  Id z 

zL=xL=32(ms)  ( i=1 ,2 ,3 )  

[53] 

[54] 

[551 

and 

where L is defined as 

~o~ E(k) dk [611 
L = 2 ~ J 0  k 

and Vt the particle terminal velocity, is equal to gTp, where Tp is the particle time constant defined 
as below: 

Tp = p~d~ 
18ppv" 

E(k) is the three-dimensional turbulent energy spectrum function. From turbulence theory, L = A~ 
(e.g. Hinze 1975). It is clear from [59] and [60] that the crossing-trajectory effect reduces the particle 
dispersion rate, while the continuity ¢.ffect makes particles disperse faster in the gravity direction 

DI, LuSF1 Ce2u-i-l-'/2 

= v, L +--W-,~ J 

Lu 2 [- Ce]u~q-i/2 
D22 = --~- L4 + ---~t2 J , 

[59] 

[60] 

eE = Z/E = 1.37zL (i = 1, 2, 3). [56] 

The Eulerian spatial scales are defined as 

A, = 2.5~Lx/~ [57] 

and 

A2 = A3 = 0.5Al. [58] 

The turbulent mean velocity and variance given by [53]--[55] correspond to the values taken at the 
section x / M  = 68 in the experiment of Synder & Lumley (1971). In the computation, particles were 
emitted at x = 0 and the initial particle velocity was set to be the local fluid instantaneous velocity. 
To avoid the effects of the initial condition, the statistics for particle dispersion began at x = 900 
(era). 

For particle dispersion, situations could be distinguished. For one the crossing-trajectory effect 
is important; in the other it is not. In the former case, Csanady (1963) arrived at the following 
results for the long-time longitudinal and transverse diffusion coefficients of the particle, DH and 
D22: 
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Figure ! la. Predicted longitudinal particle dispersions in the presence of the crossing-trajectory effect. 

than in the normal direction. However, it should be pointed out that in the absence of Vt [59] and 
[60] are no longer valid, except in the limit of zero particle inertia. Form__ulas [59] and [60] are 
consistent with the works of Reeks (1977) and Pismen & Nit (1978) as u2/V 2 is small enough. 
Substituting the present values of A, and Co 2 into [59] and [60], D ,  and D22 are obtained. In 
the calculation, gravity is directed in the opposite direction to the x axis. Here the subscripts 
11 and 22 represent the directions parallel and perpendicular to the gravitational force. Figures 1 la 
and l ib  represent the predicted dispersions for particles with different time constants Tp. 
Tables 10 and 11 give the predicted and theoretical (computed from [59] and [60]) long-time particle 
diffusion coefficients, respectively. It is observed from the two tables that with increasing Tp, the 
predicted values for D . ,  D22 and D22~ .  gradually approach the theoretical results given by [59] 
and [60]. This means that as long as x/u 2 is small enough, the predicted long-time particle diffusion 
coeffidents D .  and D22 are inversely proportional to Vt and due to the continuity effect, D22/DI! 
tends asymptotically to 0.5. 

Another interesting case for the calculation of particle dispersion is when the effect of 
~ossing-trajectories is absent. This allows an examination of the effect of particle inertia. Figure 12 
gives computed particle dispersions for this case. Since the integral timescale of the Eulerian 
temporal velocity correlation is greater than the Lagrangian one in the present work, the long-time 
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Figure I lb. Predicted transverse particle dispersions in the presence of the crossing-trajectory effect. 
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Table 10. Predicted long-time particle diffusion coefficients 
Table 11. Theoretical long-time particle diffusion co- 

efficients 

Tp (ms) 50 150 Tp (ms) 50 1 50 
D n (em2/s) 2.51 1.16 D u (em2/s) 3.65 1.46 
/)22 (em2/s) 1.63 0.66 D22 (em2/s) 2.11 0.74 
D22/Du 0.65 0.57 D22/Du 0.58 0.51 

particle diffusion coefficient increases with the particle time constant; it is larger than that of the 
fluid, as explained by Reeks (1977). This is shown clearly in figure 12. The predicted long-time 
particle diffusion coefficients for the 1600 (ms) particle and fluid are, respectively, 9.1 and 6.0 
(cm2/s). Their theoretical counterparts are 8.59 and 6.272 (crn2/s), given by [51] and [52], 
respectively. The two are in a fair agreement. The restriction on the timestep of  model 2 is 

• / L E Al A2'~ 
A t  = m,n~z,,  z, ,~ t t ,Vt  t . j  [62] 

4. D I S C U S S I O N  AND C O N C L U S I O N S  

Based on the idea of  a time series analysis (Box & Jenkins 1976), two Lagrangian models, that 
include the effects of  the temporal and spatial variations of the turbulence o n  particles, have been 
established• Model 1 is used to simulate particle dispersion in the two grid-generated decaying 
isotropic turbulent air flows studied by Snyder & Lumley (1971) and Wells & Stock (1983). 
Comparison is made of  the predicted and measured particle dispersion and velocity decay in the 
transverse direction. Computed particle dispersion and velocity decay are also presented for the 
longitudinal direction. The crossing-trajectory and continuity effects can be observed clearly on the 
particle dispersion and velocity decay. The numerical results are also compared with the theoretical 
results of  Nir & Pismen (1979) for the copper particle velocity auto-correlation of  the experiment 
of  Snyder & Lumley (1971). In addition, in order to examine the combined effects of inertia, 
continuity and crossing-trajectories, the integral timescales of  particle auto-correlations are given 
in the directions parallel and normal to gravity. Some comparisons are in good agreement and 
others are not. For example, model 1 underpredicts the 57/~m particle dispersions for the 
experiment of  Wells & Stock (1983) and it cannot show that 57/tm particles disperse faster than 
5/~m particles when Vt = 0. The sensitivity of model 1 to the time step At of  the computation was 
tested; the results indicate that particle dispersion depends only slightly on At. 

In the case where the turbulent mean flow has one main direction, model 1 has been extended 
to include the Eulerian temporal velocity correlation and the so-called mixed model (model 2) has 
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Figure 12. Predicted particle dispersions in the absence of the crossing-trajectory effect. 
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been devised. The mixed model is then applied to particle dispersion in a stationary, homogeneous, 
isotropic and incompressible turbulent flow. The numerical results show that model 2 is 
capable of predicting, in the absence of the crossing-trajectory effect, that the long-time particle 
diffusion coefficient is larger than that of the fluid if the Eulerian integral timescale of the velocity 
correlation is larger than the Lagrangian one, as pointed out by Reeks (1977). The long- 
time particle and fluid diffusion coefficients computed by model 2 agree with the theoretical 
results of Pismen & Nir (1978) and Taylor (1921), respectively. It is also verified that when the 
particle drift is dominant, the predicted long-time longitudinal and transverse particle coefficients 
gradually approach the two formulas of Csanady (1983); i.e. the long-time particle diffusion 
coefficient in the gravity direction is twice the transverse one and that both diffusion coefficients 
are inversely proportional to the particle free-fall velocity. This implies that model 2 takes 
into account inertia, continuity and crossing-trajectory effects. However, if Vt is small, the long- 
time particle diffusion coefficient given by the present study disagrees somewhat with Csanady's 
result. 

Furthermore, calculations, not presented here, show that, except for the case where the 
crossing-trajectory effect is absent and the particle time constant is large, the differences between 
the results arising from models 1 and 2 are insignificant. 

All the calculations presented above were obtained by averaging over 5000 particles trajectories 
on a SUN SPARC 1 station. For a typical run, the particle dispersions shown in figures 2a and 
2b, required about 1800 CPU seconds. 
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